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e “Cooling” session (Wed., 10:50-12:30)
e “SC Magnets for Cooling™ session (Wed., 15:50-17:20)

 “Acceleration and Ring” session (Thurs., 10:50-12:30)

D. M. Kaplan, IIT 2
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e “Cooling” session (Wed., 10:50-12:30)
e “SC Magnets for Cooling™ session (Wed., 15:50-17:20)

 “Acceleration and Ring” session (Thurs., 10:50-12:30)

Caveat: Impossible to do justice to =5 hours’ worth of
talks in 15 minutes!

= This is just my (necessarily subjective)
impression of the highlights

D. M. Kaplan, IIT 2
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|. Neuffer: Muon Capture for a Muon Collider

D. M. Kaplan, IIT 3
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|. Neuffer: Muon Capture for a Muon Collider

& N : .*
ol Outline 2/ ag
» Motivation

= ut-u- Collider front end

> Produce, collect and cool as many muons as possible
 Start with v-Factory IDS design study

= Reoptimize for Collider
* Shorter bunch train
= Higher energy capture, shorter front-end
* Larger gradients

> Bunch Recombiner

= Time reverse to combine
> Beam Loss problem

= Chicane, Absorber, shielding
» Discussion

D. M. Kaplan, IIT 3
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» Motivation
= ut—u- Collide

> Produce, collect and cool as many muons as possible
 Start with v-Factory IDS design study

= Reoptimize for Collider
* Shorter bunch train
= Higher energy capture, shorter front-end
* Larger gradients

> Bunch Recombiner

ime reverse to combine
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= Chicane, Absorber, shielding

» Discussion
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|. Neuffer: Muon Capture for a Muon Collider

* “Frequency vernier” approach:
(VF version) Buncher momentum range: 233 to 154 Me V/c
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D. M. Kaplan, IIT 4
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* “Frequency vernier” approach:
(VF version) Buncher momentum range: 233 to 154 Me V/c
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|. Neuffer: Muon Capture for a Muon Collider

e Also discussed:
helical bunch recombiner

* Linear time-momentum relation
° o . z 2
attractive for bunch recombination: me

E

b [ o
b (] L]
o o o

Time of Flight [ns]

g
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Momentum [GeV/c]
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|. Neuffer: Muon Capture for a Muon Collider

e Also discussed:
helical bunch recombiner
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|. Neuffer: Muon Capture for a Muon Collider

e Also discussed:
helical bunch recombiner

 Linear time-momentum relation o AE
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e See his talk for much more!
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2. Roberts: Cooling
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2. Roberts: Cooling
_ SO“ ‘\CC‘;/G%A
/ R Outline T

Muon lonization Cooling
— Everything you need to know in 30 seconds

The Devil is in the Details
— Brief Descriptions of 6-D Cooling Techniques
— Brief Descriptions of Final Cooling Techniques
— Briefer Descriptions of Other Techniques

God is in the Details

— Putting It All Together
— System-Level Considerations

The Detalls are in the Detalils
— MAP Cooling Efforts in the Next Year or So

* Summary

'Ofogra\‘\

D. M. Kaplan, IIT
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2. Roberts:

Muons, Inc.

Muon lonizati
— Everything y:

The Devil is ir
— Brief Descrig

— Brief Descrig
— Briefer Desc

God is in the

— Putting It All
— System-Leve

The Detalils a
— MAP Cooling

Summary
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“Cooling” session T
Cooling
Summary =
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We have mature conceptual designs for three 6-D cooling
techniques:

Guggenheim

Helical Cooling Channel

FOFO Snake

We have a mature conceptual design for one final cooling
technique, albeit with serious challenges:
High-field solenoids

We have a good start on a promising new final cooling technique:
Epicyclic PIC

We have a good start on the additional components.

We need to perform complete simulations of every component,

including matching.

The details are daunting, and there is a lot of work

remaining to prepare for the cooling down-selection.

D. M. Kaplan, IIT
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3. Coney: MICE

D. M. Kaplan, IIT WG2 Summary, Part 2 1 July, 2011
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3. Coney: MICE
Outline

Introduction

.......
Hil\ie

MICE Description

Step 1 Results

Cooling Channel
Status

Conclusions

D. M. Kaplan, IIT
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3. Coney: MICE
Outline Conclusions:
Introduction IS,
MICE Description

Step 1 Results

Cooling Channel
Status

Conclusions

D. M. Kaplan, IIT 7
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3. Coney: MICE

Outline Conclusions:
Introduction

MICE Step 1 data-
taking complete

.......
Hil\ie

MICE Description

Step 1 Results

Cooling Channel
Status

Conclusions

D. M. Kaplan, IIT 7
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3. Coney: MICE
Outline Conclusions:
Introduction MICE Step 1 data-
taking complete
MICE Description Innovation: while
awaiting spectrometer

solenoids, measured
beam emittance
using time-of-flight
detectors alone!

Step 1 Results

Cooling Channel
Status

Conclusions

D. M. Kaplan, IIT 7
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3. Coney: MICE
Outline Conclusions:
Introduction T MICE Step 1 data-
taking complete
MICE Description Innovation: while
awaiting spectrometer

solenoids, measured
beam emittance
using time-of-flight
detectors alone!

Step 1 Results

Cooling Channel

Status MICE muon beam
understood and
Conclusions ready for arrival of

spectrometer solenoids
and cooling channel

D. M. Kaplan, IIT 7
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|. Ogitsu: Radiation Hardness of LTS and HTS SC

D. M. Kaplan, IIT 8
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|. Ogitsu: Radiation Hardness of LTS and HTS SC
Contents

» Why KEK (J-PARC cryogenics section) is ~ Needed for JPARC high-power

studying Radiation Resistant SC Magnets %é‘i)lﬁireﬂsand COMET muon
e Radiation Hardness of SC Magnet
* Present R&D and Future Plan

e Summary

D. M. Kaplan, IIT 8
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|. Ogitsu: Radiation Hardness of LTS and HTS SC
Contents

» Why KEK (J-PARC cryogenics section) is ~ Needed for JPARC high-power

studying Radiation Resistant SC Magnets ;Léﬁﬁglsand COMET muon
e Radiation Hardness of SC Magnet
* Present R&D and Future Plan

* Summary:

D. M. Kaplan, IIT WG2 Summary, Part 2 1 July, 2011 9
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|. Ogitsu: Radiation Hardness of LTS and HTS SC
Contents

Why KEK (J-PARC cryogenics section) is ~ Needed for JPARC high-power

studying Radiation Resistant SC Magnets ;léﬁﬁglsand COMET muon
Radiation Hardness of SC Magnet
Present R&D and Future Plan

Summary:

— Literature indicates NbTi, Nb3sSn, YBCO all OK up to 10%%2 n/m?
— lrradiation studies done on Al, Cu stabilizers
— Tentative design guideline: 102 n/m?, 10 MGy. (£ITER spec.)
— Current R&D priority: Stabilizers and Glues

— Thermal cycle to room temperature may help to recover
properties of metals, but not organic materials

D. M. Kaplan, IIT 9
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2. Shen: Generating Very High Magnetic Field using
a round—wire HTS conductor &
Quench protection of HTS magnets

D. M. Kaplan, IIT 10
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2. Shen: Generating Very High Magnetic Field using...

Muon collider designs demand 30-50 T solenoids

NMR communities need 30 T all superconducting magnets.

@ A transformational opportunity for high-field science
— But it is also a quantum leap in technology.

@ Challenges to 30+ T HTS magnets:

— Engineering the conductor to carry >200 A/mm?2in 20-50 T

— Managing stress >200 MPa
— Protecting magnet from quenches

We recently significantly improved the J, of a round-wire

HTS conductor to 600 A/mm?2 at 4.2 K, 20 T.

@ Quench is an old problem but needs new solution in HTS

maghnets
— Finding a novel quench detection method is the key.

D. M. Kaplan, IIT
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2. Shen: Generating Very High Magnetic Field using...

Muon collider designs demand 30-50 T solenoids

NMR communities need 30 T all superconducting magnets.

@ A transformational opportunity for high-field science mp VHFSMC
— But it is also a quantum leap in technology.

@ Challenges to 30+ T HTS magnets:

— Engineering the conductor to carry >200 A/mm?2in 20-50 T

— Managing stress >200 MPa
— Protecting magnet from quenches

We recently significantly improved the J, of a round-wire
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D. M. Kaplan, IIT
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Muon collider designs demand 30-50 T solenoids

NMR communities need 30 T all superconducting magnets.

@ A transformational opportunity for high-field science mp VHFSMC
— But it is also a quantum leap in technology.

@ Challenges to 30+ T HTS magnets:

— Engineering the conductor to carry >200 A/mm?2in 20-50 T

— Managing stress >200 MPa
— Protecting magnet from quenches

- @ We recently significantly improved the J, of a round-wire

BSCCO

HTS conductor to 600 A/mm? at 4.2 K, 20 T. A

@ Quench is an old problem but needs new solution in HTS

maghnets
— Finding a novel quench detection method is the key.

D. M. Kaplan, IIT
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3. Gupta: R&D Towards 40T Solenoids at BNL

D. M. Kaplan, IIT 11
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3. Gupta: R&D Towards 40T Solenoids at BNL

SEONEINEN | High Field Solenoid Projects at BNL

Superconducting
Magnet Division

» ~35T HTS/Nb;Sn s.c. solenoid for Muon Collider (PBL/BNL SBIRs)

1 34 HTS coils already built and tested using over 3 km of conductor
» ~40T (~20"T HTS) insert coil PBL/BNL SBIR (~20"T comes from HTS)

1 23 T already demonstrated in the background field of NHMFL

» ~25T large aperture HTS solenoid for SMES (ARPA-E funded)
1 R&D would directly benefit high field solenoids for SMES

» A very brief summary of selected HTS R&D on related topics (e.g. quench

protection, stress limit, radiation damage) and other HTS programs at BNL

D. M. Kaplan, IIT 11
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3. Gupta: R&D Towards 40T Solenoids at BNL

BROOKHFEAVEN
NATIONAL LABORATORY . "y" r|e|d So'eno|q rl‘c\;el""s a"' BNL

Superconducting
Magnets&ivision

» ~35T HTS/Nb;Sn s.c. solenoid for Muon Collider (PBL/BNL SBIRs)

1 34 HTS coils already built and tested using over 3 km of conductor
» ~40T (~20"T HTS) insert coil PBL/BNL SBIR (~20"T comes from HTS)

O 23 T already demonstrated in the background field of NHMFL

» ~25T large aperture HTS solenoid for SMES (ARPA-E funded)
1 R&D would directly benefit high field solenoids for SMES

» A very brief summary of selected HTS R&D on related topics (e.g. quench

protection, stress limit, radiation damage) and other HTS programs at BNL

D. M. Kaplan, IIT 11
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3. Gupta: R&D Towards 40T Solenoids at BNL

«*“SC Magnets for Cooling”
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» ~25T large aperture HTS solenoid for SMES (ARPA-E funded)
1 R&D would directly benefit high field solenoids for SMES

» A very brief summary of selected HTS R&D on related topics (e.g. quench

protection, stress limit, radiation damage) and other HTS programs at BNL
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D. M. Kaplan, IIT WG2 Summary, Part 2 1 July, 2011
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Hign Tield Solenoid Fircjects at BNL
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Measured Field in HTS Solenoid (T)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 LI’ HTS programs at BNL
Current in HTS Coils (A)

D. M. Kaplan, IIT 11
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3. Gupta: R&D Towards 40T Solenoids at BNL

BROOKHFEVEN
NATIONAL LABORATORY ‘L"y" r|e|d Soleno|q l'

Supcreondur
MagnetsPivision T

23T

Méasured Field in HTS Solenoid (T)

o
0 20 40 60 80 100 120 140 160 180 ZOD 220 240 260

Current in HTS Coils (A)

* We hope to demonstrate a ~100 mm, 10 T HTS
solenoid in a few months.

* We hope to demonstrate 10-12 T, ~25 mm
insert HTS solenoid in ~6 month.

* We hope to demonstrate ~20-22 T HTS
solenoid by combining two in ~10 month.

* We hope to test above in ~20 T resistive
solenoid at NHMFL to test HT'S magnet
technology to field approaching 40 T in about
a year or so.

* Novel HTS quench protection R&D under way

» Vigorous R&D program with funding from
many sources: SBIRs, FRIB, ARPA-E
(SMES), base program.,...

» MAP invited to collaborate more closely

D. M. Kaplan, IIT
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4. Lombardo: R&D Towards 40T Solenoids at FNAL

D. M. Kaplan, IIT 12
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4. Lombardo: R&D Towards 40T Solenoids at FNAL

Talk Outline

o Accey
00

1. YBCO Coated Conductors
2. YBCO Insert Coils for High Field Magnets

Overview of Manufacturing and Testing of YBCO insert coils

How to account for anisotropy in YBCO magnet design both for self field and in-field operation
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“30-40T fully superconducting
magnets are achievable with
technology available today.” 4

M. Yu et al. “Fabrication and test of short helical
solenoid model based on ybco tape”
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5RCS <& >=21 MV/m

|. Bogacz: Acceleration Lk IRGS < 5= 21 M/

* Progress reoptimizing acceleration = @ s san
for uC (as opposed to VF) o—o 2 REA<£>= 10MV/m

— l1Linac <& >=79MV/m

Es  n fre Vag Decay Py Pyl
GeV MHz MVim % MW MW
Linac/ 15 1.0 201 79 24 46 34
RLA | 125 45 201 40 76105 7.8
RLA [100.0 6.5 402 56 5.4 469 11.7
RCS [400.0 23.0 805 21 10.2 396 4.7
RCS [750.0 27.0 805 21 4.8 393 7.2
27.1 34.8
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5RCS <€ >=21 MV/m

|. Bogacz: Acceleration Lk IRGS < 5= 21 M/

3 RLA <€ >=56 MV/m
£ >=40MV/m
— lLinac <& >=79MV/m

* Progress reoptimizing acceleration ~
for uC (as opposed to VF) © o—o R

. . E n frRe  Vay Decay Fok Pyal
* Now exploring dogbone RLAs with GeV  MHZMVm % MW MW

. . . Linac| 15 1.0 201 79 24 46 34
multipass arcs (design for 2 energies) ru| 125 45 201 40 76105 78

RLA |100.0 6.5 402 56 5.4 469 11.7

RCS [400.0 23.0 805 21 10.2 396 4.7
RCS|750.027.0 805 2.1 48393 7.2
271 34.8
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|. Bogacz: Acceleration Lk IRGS < 5= 21 M/

* Progress reoptimizing acceleration = Q) + s <eo—sov
fOI" IJC (as Oppcsed to VF) ©—® 2 RLA <E>=40MV/m

— lLinac <& >=79MV/m

. . Es n fre Vayg Decay Py Pyal
* Now exploring dogbone RLAs with GeV  MHZMVm % MW MW

. . . Linac| 15 1.0 201 79 24 46 34
multipass arcs (design for 2 energies) ru| 125 45 201 40 76105 78

RLA |100.0 6.5 402 56 5.4 469 11.7

RCS [400.0 23.0 805 21 10.2 396 4.7
RCS [750.0 27.0 805 2.1 4.8 393 7.2
27.1 34.8
@ Droplet arc:

GeVIc

* 60° outward bend 20 ' 24 GeVic
» 300° inward bend Vv
* 60° outward bend 10 / \\

— should be less costly " /)
20 |- 1269V/cob1dsplaoemnl x10

— looks promising!
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2. Alexahin: Ring lattices

= Lattice design
- 1.5 TeV c.o.m Lattice
- New 3 TeV c.o.m Lattice

Fringe Field and Multipole Errors
= Strong-Strong Beam-Beam Simulations

* Plans
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2. Alexahin: Ring lattices

= Lattice design

- 1.5 TeV c.o.m Lattice

» Solution devised with B* = | cm

o displaced FF quad doublets to sweep decay electrons and
give robust chromaticity correction

» But large By _max — high sensitivity to magnet errors, and
approach may not work at higher energy

o Acceg,.

SV
Tl

'ofogram

O
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2. Alexahin: Ring lattices

= Lattice design
- 1.5 TeV c.o.m Lattice
- New 3 TeV c.o.m Lattice

» Solution devised with undisplaced FF quad triplets, gives
0.5 cm P*

» Solves By max problem, but concerned about
horizontal stability
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2. Alexahin: Ring lattices

= Lattice design
- 1.5 TeV c.o.m Lattice
- New 3 TeV c.o.m Lattice

Fringe Field and Multipole Errors
= Strong-Strong Beam-Beam Simulations

* Plans

» Seek compromise solution, explore sensitivity to
errors, etc.

» Need more manpower!

D. M. Kaplan, IIT 14



ILLINOIS INSTITUTE\[/}'

“Acceleratlon and Ring”

3. Summers: Fast Ramping 750 GeV Muon Synchrotron

D. M. Kaplan, IIT 15



SE:'..'
ILLINOIS INSTITUTE\V/

“Acceleration and Ring” <y*
1 OF TECHNOLOGY session
Progra®

3. Summers: Fast Ramping 750 GeV Muon Synchrotron

Muon Acceleration Summary

e Synchrotrons are a lot less expensive than racetracks

e 400 Hz, 1.8 T dipole prototype is in progress.
Mitred laminations from Pacific Laser Laminations are ready
Need to see how well the magnetic flux circuit works.

e Al Garren and Scott Berg are working on interleaved lattice.
What magnet errors can be tolerated? Gap is small.
Hexapole fields in beam pipe.

e Trying to optimize keeping in phase with 1.3 GHz SRF
PACO7: Adjust orbit radius & use 2 rings. 100 — 400 — 750
1.5 TeV put = collider. D. Summers et al., arXiv:0707.0302
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Muon Acceleration Summary
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e Synchrotrons are a lot less expensive than racetracks , (em)

Quadrupole Quadrupole

. .. N —
e 400 Hz, 1.8 T dipole prototype is in progress.
Mitred laminations from Pacific Laser Laminations are ready Pulsed -1.8to 18T /
Need to see how well the magnetic flux circuit works. T £ 400 Gev Superconducting 8T
E=037 GeV
e Al Garren and Scott Berg are working on interleaved lattice. | | | |

0 10 Length (m) 20 30

What magnet errors can be tolerated? Gap is small.
Hexapole fields in beam pipe.

e Trying to optimize keeping in phase with 1.3 GHz SRF
PACO7: Adjust orbit radius & use 2 rings. 100 — 400 — 750
1.5 TeV put = collider. D. Summers et al., arXiv:0707.0302
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Muon Acceleration Summary

A\

e Synchrotrons are a lot less expensive than racetracks , (em)

Quadrupole Quadrupole

0 <|>

e 400 Hz, 1.8 T dipole prototype is in progress. <
Mitred laminations from Pacific Laser Laminations are ready Pulsed -18to 18T 711
Need to see how well the magnetic flux circuit works. T

Superconducting 8 T

e Al Garren and Scott Berg are working on interleaved lattice. L | | |
. 0 10 n m 20 30
What magnet errors can be tolerated? Gap is small. rengch (m)
1 H H Grain Oriented Silicon Steel Dipole Prototype
Hexapole fields in beam pipe.

e Trying to optimize keeping in phase with 1.3 GHz SRF
PACO7: Adjust orbit radius & use 2 rings. 100 — 400 — 750
1.5 TeV put = collider. D. Summers et al., arXiv:0707.0302

— st prototype
revealed saturation problems
(due to “T” joints?)
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Muon Acceleration Summary
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e Synchrotrons are a lot less expensive than racetracks , (em)
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e 400 Hz, 1.8 T dipole prototype is in progress. <
Mitred laminations from Pacific Laser Laminations are ready Pulsed -18to 18T 711
Need to see how well the magnetic flux circuit works. T
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Superconducting 8 T

e Al Garren and Scott Berg are working on interleaved lattice. L | | |
. 0 10 n m 20 30
What magnet errors can be tolerated? Gap is small. rengch (m)
1 H H Grain Oriented Silicon Steel Dipole Prototype
Hexapole fields in beam pipe.

e Trying to optimize keeping in phase with 1.3 GHz SRF
PACO7: Adjust orbit radius & use 2 rings. 100 — 400 — 750
1.5 TeV u™pu~ collider. D. Summers et al., arXiv:0707.0302

— st prototype
revealed saturation problems
(due to “T” joints?)

« -
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L H ! ! H 1| — Hope for improvement

using mitred laminations
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* Muon capture already = optimized

— but can still benefit from tweaking

e Helical channels good for bunch
combining

e Cooling designs well along, now
need more realistic simulations

— 3 main 6D-cooling options, 2 final

— aim for FY |2 down-select

 MICE cooling demo progressing
towards = 2014 conclusion
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* Muon capture already = optimized ¢ Magnets: 40T challenging, but
good progress

— but can still benefit from tweaking
e Acceleration: exploring
potentially lower-cost solutions

e Helical channels good for bunch
combining

— RLA design optimization

e Cooling designs well along, now

need more realistic simulations e Storage-rings: difficult
— 3 main 6D-cooling options, 2 final constraints, but solutions being
| found

— aim for FY |2 down-select
— need to ramp up effort

 MICE cooling demo progressing
towards = 2014 conclusion
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e Neuffer’s conclusions:
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Conclusions (2)

e Neuffer’s conclusions:

Summary

PHIL, THE PRINCE OF
INSUFFICIENT LIGHT

YOU STAND ACCUSED
OF BEING HAPPY AT

Dilbert.com DilbertCartoonist@gmail.com

YOUR PENALTY IS TO
ATTEND A MEETING SO
HORRIBLE THAT NONE

MAY SPEAK ITS NAME.

Snowmass 2013

NO. . . PLEASE, ..
ANYTHING BUT
THIS. (.
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